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Abstract In the present study, the characteristics of the turbulent boundary layer developing on
a porous wall with various angles of njection and suction are analyzed numerically with the
proper boundary conditions. The finite difference method based on a control volume approach is
used for solving the time averaged Navier-Stokes equations for incompressible flow in conjunction
with the standard k-e turbulence model equations. The wall functions of the viscous and turbulent
sub-layers are modified to allow for the effect of the angle of injection and suction through the
porous wall. A non-uniform staggerved grid arrangement is used. The parameters studied include
the velocity (V) and the angle (o) of the injection and suction. The present numerical results of
the novmal injection and suction are compared with the known experimental data and a good
agreement is obtained. The numerical results also indicate that the characteristics of the turbulent
boundary layer such as local friction coefficient, boundary layer thickness and shape factor are
substantially influenced by the velocity and the angle of injection and suction.
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Nomenclature
Ct = local friction coefficient Us = free-stream velocity
Cu, Gy, Cy, 0y, 0 u, = friction velocity
= turbulence model constants u, v = velocity components
G = generation rate of turbulent kinetic =~ Vi = injection and suction velocity
energy Xy, Y, = horizontal and vertical lengths of
His = shape factor, & /8, the computation domain
L] = value at (i, j) cell X,y = Cartesian coordinates
Ivax, Jmax
= maximum Va}lugs of grid numbers Greek symbols
k B turbulenge kmehc energy e = angle of injection and suction
n = normal direction to the porous € = turbulence energy dissipation rate
wall AX,AY = distances between the grid points
b = pressure B = boundary layer thickness
Re = Reynolds number based on porous & = displagement thickness,
wall length, U _X;/v = [(1—L)dy
r = mesh expansion ratio 0 Ve
Ss = source term ) = momegltum thickness,
Tu = turbillence 1lnte_,r;51ty+2 _ Sy = f& (14)dy
. Tu = 100 [3 (U + 0% +w }/ Uso K = von Karman constant (k= 04)
t = time 1) = any dependent variable (ie. u, v, k, €)
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T = coefficient of diffusion t = turbulent
I = dynamic viscosity w = wall
p = density
v = kinematic viscosity
T = shear stress .
Superscripts
Subscripts + = normalized quantity
eff = effective I = fluctuating quantity
p = intersection point - = time average

Introduction

The study of turbulent boundary layer on a porous wall with injection and
suction is of great importance for technological applications. Among them it
may be mentioned that the introduction of a foreign gas into the boundary
layer through a porous wall constitutes an effective film or transpiration
cooling. This reduces the rate of heat transfer from the hot, streaming gas to the
solid body, as is done for gas turbine blades. Similarly, this is a means of
reducing the rate of heat flow from the boundary layer rendered very hot by
kinetic heating on a body flying at a hypersonic velocity to its wall. Injection
can also produce a considerable reduction in drag (see Schlichting, 1979).

Although the turbulent boundary layer on a porous wall with normal injection
and suction has been studied by many investigators, the effects of the tangential
injection and suction on the characteristics of boundary layer have not been
studied in detail. Some experimental results of transpiration and film cooling
through a porous wall were reviewed by Eckert and Drake (1972). An introductory
review of boundary layers with normal suction and blowing was given by
Schlichting (1979). The existing works on turbulent boundary layer, with and
without normal transpiration, have been reviewed and also the skin-friction
measurements at low Reynolds numbers with transpiration have been carried out
by Simpson (1970). Schetz and Nerney (1977) experimentally investigated the
turbulent boundary layer with normal injection and surface roughness. The results
of this study reveal that the velocity and turbulence intensity in the turbulent
boundary layer increased with increasing rate of injection. The effect of uniform
normal mass bleed into the separated-reattaching flow over a backstep has been
investigated experimentally by Yang et al (1994). The flow over a backward-
facing step with uniform normal mass bleed has been numerically analyzed by
Yang and Kuo (1997) and the results obtained have been compared with the
experimental data of Yang et al (1994). The majority of the analysis of boundary
layers developing on porous walls so far is limited to experiments and theories,
whereas the numerical analysis of such flows gives more detailed information on
the interrelationship between the boundary layer characteristics and porous wall
parameters such as angle of injection.

Numerical studies of the prediction of turbulent boundary layer characteristics
need to be formulated in the region close to the wall where the high velocity
gradients are encountered. As is known, the turbulent boundary layer has sub-
layers, e.g. the linear sub-layer, buffer zone, turbulent sub-layer (log-law region)
and outer layer, which are represented by the wall functions. When the wall is



porous, the wall functions are modified to include the effect of injection or suction.
Here, the numerical study of the effects of a uniform injection and suction with
various angles through a porous wall on the turbulent boundary layer
characteristics is presented. The numerical results of uniform normal injection
are compared with the experimental data given by Schlichting (1979) and the
agreement is found to be satisfactory.

Mathematical formulation

The governing equations

The time averaged Navier-Stokes equations incorporating the Boussinesq
turbulent viscosity concept are used in conjunction with the turbulent viscosity
defined by the high-Reynolds number version of the k-¢ model of turbulence
(see Launder and Spalding, 1979). The steady conservation equations for
two-dimensional incompressible turbulent flow can be written as:

d a¢) L9 00

T (Pu0) + 8% (pve) = % (r (T 5y +50 (1)

Oy

where ¢ represents any of the variables (u,v,k,e) and S, is the corresponding
source term. All the governing equations and constants used in this study are
summarized in Table L

Boundary conditions
At the inflow boundary of the computation domain uniform velocity profile
imposed with:

= Uy, k = 15(TuUx ), e = CY/*k%? /iy, 2)

Along the outflow and free boundaries where the flow field is regarded as fully
developed, the normal derivatives of all properties are zero, i.e.:

Equation ) r Ss

Continuity 1 0 0

X-momentum u Ueff - % - 0% (% k) + OQ (Htest 8x) + % (Mt aX)
y-momentum Hetf - % - % (% pk) + 01 (Hhett 9y) + % (et g—y)
Turbulence kinetic k %Lﬁ G- pe

energy k

Turbulence energy € I(LTLH £(C1G — Cope)

dissipation rate ‘

Notes: pies = pu+ pu, e = pC,k%/e

C,=009, C =14, =192, 0,=10, 0. =13
‘ 2
6 = nf [0 + 2] + [0+ )]}
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Table 1.
Summary of
equations solved
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Figure 1.

The schematic
representation of the
flow field

ov
__o,%_o,—_O—_O. (3)

In order to obtain the wall functions in the near-porous wall region, the
momentum equation of two-dimensional incompressible turbulent boundary
layer with zero pressure gradient can be regarded, which is represented by (see
Schlichting, 1979):

ou ou 0 6 Ou

v E Y OV
u8x+V8y 8y(y(‘)y uv'). (4)

Close to the wall, the derivative of du/dx is small and can be neglected (see
Cebeci and Smith, 1974), the momentum equation then becomes:
du d du —
— = — (v——uV). 5
de dy(de u'v’) (5)
Integrating equation (5) from y = 0 to any y and the using the porous wall conditions

with tangential injection; u(0) = Vycosa, v(du/dy)|,_g =7w/p = u? and
uv'[,_yaty = 0 (Figure 1) yields:

2 Tt du .
uw=—+v——(u—Vycosa)Vysina 6
T ) ©

where 7/p = —u'v'.
The use of Prandtl’s mixing-length expression with the mixing length
formula described by van Driest (see Schlichting, 1979) gives:

% (o)1 - exnl - 20| (G )

Main Flow

\a i u=Vcosa
/s

Porous Wall




where A is a damping-length constant, for which the best correct choice is
about A = 26 exp (-5.9V/u,) (see Cebeci and Bradshaw, 1977). Combining the
equations (6) and (7) gives:

du du

a(Y)(d—y)2 + Vd_y — 2 — (u—Vycosa)Vysina =0 (8)

or,

du —v+ \/1/2 +4a(y) [u2 + (u— Vi cos a)Vy sina|
dy 2a(y) ©)

where a(y) = (ky)?|1 — exp(—yu,/vA)?|. Multiplication of both numerator and
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denominator of equation (9) by v + /v2 + 4a(y)[u2 + (u — Vy cos a)Vy, sin o]
yields:

du _ 2|u? +uVysina — (VZsin2a) /2| (10)
@,y \/y2+4a(y) (42 + uVysina — (VZsin2a) /2]
In terms of normalized quantities this equation can be written as:
du* 21+ utV, sina — (V,/2sin2a)/2] 1)
dy* 1—|—\/1—|—4a(y+)[1—|—u+V;jsina—(th2sin2a)/2}
where the normalized quantities are defined as:
u Vit v 9 yt 17
R ] Y — (et _ s
u _MT,y 0 Vu uT,a(y )= (ky") [1 exp( A)} . (12

Equation (11) defines the velocity gradient in the turbulent boundary layer. In
the viscous sub-layer, neglecting the turbulent stress, i.e. taking a(y*) = 0 in
equation (11) and integrating it from the wall to an arbitrary non-dimensional
coordinate with the condition of u™ = V{ cosaat y* = 0 gives:

= exp(yt Vi sina) + (V:2sin2a)/2 — 1
B V,fsina

(13)

In the turbulent sub-layer, regarding the fact that, at large distances from the
wall (i.e. outside the viscous sub-layer), it is possible to neglect the viscous
stresses and taking a(y") = (/-zyﬂ2 in equation (11) the relation for the
velocity gradient is obtained as:

dut 1+ utVisina — (Vi2sin2a)/2 (14)
dyt Kyt
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The integration of Equation (14) from the point “p”, at which the viscous
sub-layer and turbulent sub-layer intersect to any y* gives:

Vs
g =Yidna lln

2

yt yt 1/2
sin2a) /2 +u;
Yy

w

T
K

[1 + u;VJr sin o — (V+2
vy
(15)

where u', y* and  are functions of V} and Re;, in general (see Simpson, 1970).
For V{, = 0, equation (15) reduces to the universal velocity distribution formula
on a nonporous wall:

1

+
lny

vy
In the case of normal injection (o« = 900°), different investigators have evaluated
u; theoretically as different functions of V,, depending upon whose experimental
results they were attempting to fit. Simpson (1970) criticized the results of the
several investigators in conjunction with his experimental results and concluded
that in normal injection, using the unblown constants u” = 11 and x = 0.4, which
seems to fit the low Reynolds number unblown data as a whole, y+ is
substantially independent of V. Finally, the wall functions used in this study
with the constants of uJr = yp = 11.5and x = 0.4 can be summarized as follows:

+ _ JEquation (13); for y* <y}
~ | Equation (15); for y*>y/ [

+uy (16)

(17)

In the vicinity of the wall, the turbulent sublayer is in local equilibrium so
that the rate of turbulence kinetic energy production is exactly equal to its
dissipation rate (G = pe). Therefore, at the point close to the porous wall, the
value of turbulence kinetic energy k is calculated solving the transport
equation of turbulence Kkinetic energy neglecting the production and
dissipation terms, while the energy dissipation e can be evaluated by the
expression:

CB/4k3/2
K

Method of solution

The method of numerical solution used in the present study is based on solving
the set of discretization equations iteratively using a point by point method.
The discretization equations are derived by integrating the differential
equations over a defined control volume. As is done in general, the calculation
domain is discretized with a staggered grid which allows the prediction of the
velocity components in the momentum grid points with the QUICK scheme,



while the other variables such as turbulence, kinetic energy, etc. are predicted
in the basic grid points with the HYBRID scheme (see Patankar, 1980). At the
end of each iteration, the pressure was computed and the velocity components
are corrected satisfying the continuity equation, using the Marker and Cell
Method (see Hirt and Cook, 1972).

The grid spacing in the normal direction (y) was arranged as non-uniform
which has high-density grid points near the porous wall according to the
distance formulae AY; =AYin ' H(AYmin = 0.00Im,j = 1,2, ..., Jyax)-
Where r is the mesh expansion ratio obtained through the iterative solution of
1 = [(—1)(YL/AYmin)+1hmax. The uniform grid spacing was considered in the
x direction with the distance formulae AX = X;/Iyax as seen in Figure 2.
Based on a grid independence study, a 200 x 50 grid size was used in the
calculating domain. The iterative solution of the discretization equations is
considered to be converged when the normalized residuals of the equations are
less than a prescribed value of 0.001. All computations were conducted on a PC
—a 600Mhz-Pentium III computer.

Results and discussion

The problem analyzed corresponds to a Reynolds number (Re = U, X;/(v) of
2 x 10° to allow the developing of the turbulent boundary layer. As is known
well, in the boundary layer on a flat plate without injection and suction,
transition from laminar to turbulent flow occurs at a critical level of Reynolds
number of 3.5 x 10° to 10° (see Schlichting, 1979), depending on the turbulence
intensity (Tu) of the free stream, i.e. it was of the order of 0.01 which was used
as an inlet parameter in the present study.

A comparison of the normalized mean horizontal velocity profiles with various
values of normalized injection and suction velocities is shown in Figure 3. It
indicates that the predictions are seen to be in good agreement with the
experiments. Streamlines of the flow field for different injection and suction
velocities are plotted in Figure 4.

Xi=2.0 m

L

Ay

le— AX —p

Y1 =0.2 m
\
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Figure 2.

The finite difference
grid used in the finite
difference solution
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Figure 3.

Comparison of the
normalized mean
horizontal velocity
profiles with the
experimental data given
by Schlichting (1979)
for normal injection
and suction
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The effects of the angle of injection and suction through the porous wall on
normalized mean horizontal velocity are shown in Figures 5 and 6. It can be
seen clearly that the velocity profiles tend to be less steep, as the angle of
injection increases from 1° to 180°. In the case of suction, increasing angle of
suction from 1° to 180° causes the steeper velocity profiles. The velocity
profiles are slightly affected by the angles from 1° to 90° and also from 150°
and 180° of injection and suction, while the profiles are substantially
affected by the angles from 90° to 150° in cases both of injection and
suction.
The effects of the angle of the injection and suction on local friction
coefficient, which is defined as:
2u?
G = UOZZ

(19)

are depicted in Figures 7 and 8. It can be seen clearly that along the porous wall
the local friction coefficient is increased with increasing angle of injection,
while it is decreased with increasing angle of suction. It should also be
mentioned here that the effect of the angles higher than 90° on the local
coefficient variation is more considerable than the angles less than 90° in cases
both of injection and suction.

Figure 9 shows that the rate of boundary layer thickness growth in the
downstream direction decreases as the angle of injection increases. As is
seen, while the boundary layer thickness growth significantly depends on
the angle of injection for the values between 90° and 150°, the effects of the
angles from 1° to 90° and also from 150° to 180° on the boundary layer
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thickness growth can be regarded as unimportant. The effect of the
tangential suction through the porous wall on the growth of the boundary
layer thickness is also seen in Figure 10. Comparing the Figures 9 and 10, it
can be seen that the boundary layer thickness variations in the
downstream direction are quantitatively similar for the cases of injection
with the angles of 1° < o < 90° and suction with the angles of 150°< o <
180°.
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Another boundary layer characteristic is the shape factor defined as:
01

Hyp =2
12 62

(20)

which is a good indicator of pressure gradient. The higher the H the stronger
adverse pressure gradient and separation occurs at the certain values of the H.

12 [
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Figure 7.

Variation of the local
friction coefficient along
the wall at different
angles of injection for
Vw = 0.004 m/s

Figure 8.

Variation of the local
friction coefficient along
the wall at different
angles of suction for
V& = —0.005 m/s
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Figure 11 indicates that the injection with the angles of 17° < o < 90° causes
the strongest adverse pressure gradients in the turbulent boundary layer. The
effect of the angle of suction on the adverse pressure gradient is also seen in
Figure 12.
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Conclusions

The dimensionless velocity distribution in the turbulent boundary layer
developing on a porous wall does not follow the universal velocity distribution
law due to the effects of injection and suction. In a numerical simulation of the
turbulent flow with mass transfer through porous wall, a special wall treatment
is needed. For this reason, a modified wall function which includes the effects of
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Figure 11.

Variation of the shape
factor along the wall
at different angles

of injection for

Vw = 0.004 m/s

Figure 12.

Variation of the shape
factor along the wall at
different angles of suction
for V,, = -0.005 m/s
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injection and suction should be used. As a method of controlling the boundary
layer, the injection and suction through a porous wall can be successfully
applied to control the drag and also to provide thermal protection at high
velocities, with an adjustable angle of injection and suction.
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